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Abstract

Safe exploration is critical to using reinforcement learning in complex, hazardous,
real-world environments for which offline data aren’t available. We propose a
nonlinear safety layer that, unlike prior work, requires no restrictions on the
policy or environment, and doesn’t require offline training. We demonstrate that
a nonlinear model has higher prediction accuracy than a similar linear model and
that a linear safety layer fails to learn a non-conservative policy in Safety Gym
environments where the nonlinear layer does not.

1 Introduction

Reinforcement learning (RL) relies on exploration to learn a safe, effective policy [[1]. Exploring
hazardous and complex environments can be important to employ RL effectively on safety-critical
tasks, like driving autonomous vehicles [2]], cooling data centers [3], and controlling cyber-physical
systems [4]. These tasks are too complex to directly specify behavioural constraints, and some
environments don’t allow cost-effective or safe data collection. Ideally, learned safe exploration
would be achievable online during training, starting from a policy initialized with little or no offline
data. However, prior work in safe shielding of RL policies relies on offline training [5, 6], having
a model of environment dynamics [6} [7], or requires significant assumptions about the policy or
environment [3,[8]. By contrast, we would like to rapidly learn to avoid violating unknown constraints
while maximizing an unknown reward function in an unknown environment.

Our proposed method uses a safety layer to learn with an unconstrained RL algorithm. Similar previ-
ous work has explored defining safety as bounding observable quantities from physical systems [3].
However, as we demonstrate with experiments in Section 4] the linearity assumption that can be
made in some physical systems doesn’t necessarily generalize. Like this previous work, we use
the constrained Markov decision process (CMDP) framework to define constrained reinforcement
learning in continuous environments [9]. This adds to the usual MDP formalism a cost function that
should be minimized while simultaneously maximizing the return in each episode. In addition to
minimizing the per-episode cost of the trained policy and maximizing per-episode return, we aim to
promote safe exploration by minimizing the total cost accumulated over the training process [10].

Toward these goals, we propose a nonlinear safety layer, parameterized by a deep neural network that
estimates cost given state and action, that censors the stochastic policy to ensure the final sampled
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action is safe. Efficiently sampling a safe action is made possible using two verification techniques:
DeepPoly [[11]] and star sets [12]], arranged into a novel data structure called a constellation.

This work makes the following contributions:

1. We introduce the constellation, a probabilistic data structure built on star sets, for piece-wise
linearizing a ReLU-family deep neural network. It is independent of the choice of input data
and facilitates a probabilistic analysis of the DNN.

2. We propose an algorithm for safely sampling from a stochastic policy subject to constraints
defined by a deep neural network with no prior knowledge of the environment or agent, and
no offline data.

3. We empirically demonstrate the relative effectiveness of a nonlinear safety layer over a
similar linear model in predicting constraint violations and safe exploration.

2 Related Work

Safety Layers for Safe Exploration Dalal et al. [5] propose a safety layer that relies on the
often linear nature of environment dynamics to estimate cost as a linear function of the action with
coefficients from a state-fed DNN. A safe action is selected by sampling from the policy and solving
a simple convex optimization to find an action that is both safe and minimizes Euclidean distance
from the sampled action. It is assumed that the linear layer is pre-trained offline. We demonstrate in
Section [ that the linear safety layer doesn’t function for online training in a similar environment
to [5]], in contrast to our proposed nonlinear model. Wagener et al. 6] use an advantage-based
intervention rule to enable safe exploration with strong performance guarantees on the trained policy.
However, this guarantee relies on a shielding method that requires significant prior knowledge of
the environment to define both intervention criteria and a safe fallback policy. Shao et al. [7]] use
reachability-based trajectories to design a safety layer using a known model of environment dynamics
to constrain a physical robot.

Verification Tran et al. [12] introduce star sets (hereafter stars) as a verification tool to represent
neural network transformations of sets rather than of single inputs. Each star s is composed of two
parts, an input set I and an affine transformation, that, when composed, give its output set. The
input set is defined by a convex polytope—an intersection of half-spaces. [12]] also introduces the
stepReLU operation that linearizes the ReLU operation in one dimension by splitting the input set
into subsets > 0 and < 0. This allows an entire ReLLU-activated DNN to be linearized exactly for
some subset of the input in order to calculate its exact output.

Our sampling algorithm relies on another verification technique, DeepPoly [[11] that inexpensively
estimates overapproximate output bounds of a DNN given input bounds. Both DeepPoly and stars are
reachability methods typically employed to guarantee that an output set doesn’t intersect any unsafe
subset of the output space [13], though there also exist optimization and search-based methods for
verifying this type of property as well [14]. We repurpose these in our proposed algorithm.

Similar to our proposed constellation data structure, Bak [15] presents an “abstraction tree” for
complete, deterministic DNN verification. Both methods arrange stars in a tree, and construct the
tree in a similar manner. The key novelty in our proposal, however, is the choice to design the tree
with probabilistic properties and instantiate it with a probabilistic algorithm. In other words, the
constellation data structure specifically refers to a probabilistic tree used to answer probabilistic
questions about a DNN, which is a fundamentally new use of reachability in deep neural networks.

3 Methods

Let stochastic policy m parameterize the multivariate Gaussian action distribution,
N(u(st;0x), X(s¢;07)). Sampling from this distribution directly could result in an unsafe
action. Similar to previous work [} 16, [7]], we use a safety layer to ensure that the chosen action is
safe. Unlike previous work, we modify the distribution to censor unsafe actions rather than sampling
a concrete action and updating it with a linear optimization. This smol difference allows us to
correctly estimate the likelihood of the action under the censored distribution and doesn’t distort the
underlying distribution unnecessarily.



Our nonlinear safety layer uses a ReLU-activated DNN ¢; = f(s;, as; 6.) to directly estimate cost ¢,
given state s; and action a;. In this section, we first introduce the constellation data structure. Then,
we use the constellation to reparameterize the policy’s action distribution with respect to the DNN’s
structure and parameters. Finally, we describe an algorithm for censored sampling that modifies the
action distribution using the safety layer DNN and efficiently samples using the constellation and
DeepPoly.

Constellations  As a first step towards efficiently sampling an action that is safe relative to the DNN
cost estimate, we arrange stars into a probabilistic data structure termed a constellation. We define
a constellation to be a lazily constructed directed tree where each node is a star and has children
resulting from applying a DNN operation to the star. The tree root is a star with the full input set as
its input polytope and the identity function as its affine transformation. To compute the effect of a
DNN on the input set, we rewrite it as a sequence of affine and stepReLU operations. Then, each
operation is applied to a star to generate its children and the next operation is applied to each of those
children, and so on. Practically, in sampling, a random process selects only one child to be expanded,
which leads to a DFS-like tree construction. Each stepReLU operation partitions the star’s polytope
and each dense layer modifies the star’s affine transformation. The leaves of the constellation are
reached when there are no operations remaining in the DNN, their input polytopes are a partition of
the DNN input set, I, and their output sets are a partition of the DNN output set.

Sampling with Constellations To sample from the policy-parameterized Gaussian distribution
over actions N (u, X), we reparameterize as the choice of one of the leaves ¢ € L and a Gaussian
truncated to that leaf’s input set I,. Because the input polytopes of the leaves L are a partition of
the input set I, we have the identity N (z; p, ) = N (z; u, 2, Ip)Cat(¢; W), where the categorical
probabilities W, are equal to the likelihood that a vector sampled from N (1, ) falls in a leaf’s input
polytope, I,. This reparameterization factors the input distribution in such a way that censoring it,
conditional on the DNN parameters, is straightforward.

The number of leaves in the constellation is exponential in the number of neurons in the DNN n, so we
reparameterize the categorical distribution over all 2" leaves as a sequence of n Bernoulli distributions.
Let og, ..., 0,—1 be the outcome of ¢ sequential Bernoulli trials. Each Bernoulli outcome along the
sequence determines whether the path from the root to star s should proceed with the upper or lower
subset of a stepReLU operation, s and s<q respectively. Thus, the sequence of Bernoulli outcomes
0p, - - . , 0; uniquely determines a star s in the constellation, and a sequence of length n determines a
leaf. The probability each of the children s~ and s<q is equal to the probability that a sample from
truncated Gaussian N (1, X2, I;) falls into that child’s input set. Rewriting, we get

N(z; 1, %) = N(z; u, 2, 1) P(€), where P(£) = HBernoulli(oi|00, cey0i-1)

=0

which admits an efficient procedure for censored sampling. The interested reader may refer to
Section[A in the appendices for more information.

Censored Sampling with Constellations Input sets represented in the safety layer’s constellation
can be labelled as safe or unsafe using the bounds of its reachable output set, which can be rapidly
overapproximated by DeepPoly. In our application, this is a range of reachable cost values [c;, ¢,],
that can be checked against a pre-set safety upper limit C'. Starting at the root and at each branch
encountered in walking to a leaf through the constellation, we check the reachable set of each of the
child stars and, if ¢; > C, we zero the probability of selecting that child, which modifies the action
distribution. If ¢, < C, then the sampling procedure can stop early and the star’s entire input polytope
can be sampled from with a truncated Gaussian. If a leaf is reached before finding a totally safe star,
i.e., a leaf with input set that contains both safe and unsafe actions, it can be efficiently split into a
totally safe and a totally unsafe subset by intersecting the input set with a single hyperplane. Then,
sampling can proceed using the safe subset. This sampling procedure is summarized in Algorithm T]
in the appendices. We can guarantee that this sampling procedure will halt in bounded time and is
complete in the sense that it will find a safe action if there is one or, alternatively, correctly report that
there is no safe action. In the case that no safe action exists some alternate strategy must be defined,
typically a fallback policy or terminating the episode.



Table 1: Comparing error rates between the linear and nonlinear models on an unsafe PPO policy.

Linear Nonlinear Relative Change
[Robot [ TPR [ TNR [ TPR [ TNR [ TPR | TNR |
point | 73.71% | 74.47% | 75.85% | 79.21% | 2.90% | 6.37%
car | 68.88% | 73.91% [ 70.19% | 78.51% | 1.89% | 6.22%
doggo | 73.77% | 71.63% | 79.78% | 74.95% | 8.14% | 4.63%

Time Complexity The main concession that the proposed censored sampling algorithm makes
relative to the linear safety layer approach [S]] is speed. The proposed algorithm is a Las Vegas
algorithm, i.e., it is guaranteed to be complete, but requires a random, bounded amount of time to run.
In the worst case, the upper bound on runtime is:

O(2" - DeepPoly + 2" '.SelectChild),

where n is the number of neurons in the DNN, DeepPoly is the time required to run the DeepPoly
algorithm on a suffix of the DNN, and SelectChild is the time required to estimate the parameter
of, and sample from, a Bernoulli weighted to the relative likelihood of the children.

DeepPoly is designed to be a very fast, approximate reachability algorithm that runs in linear time
with respect to the number of DNN layers, and the SelectChild subroutine requires estimation of
the CDF of the truncated Gaussian corresponding to each child polytope. This can be accomplished
in linear time with respect to the number of DNN neurons. In practice, however, we find that much
less work needs to be done than the pessimistic bound, both due to the branch-and-bound DFS search
of the constellation and the following simple modification to the algorithm. At each iteration, the
current star’s input set is sampled and the sample is run forward through the DNN. If the output is
safe, then the sample can be returned and the algorithm terminated early.

In many realtime settings, a variable runtime can be disqualifying. To address this, the sampling
procedure can be converted into a Monte Carlo algorithm by adding a time limit and caching the
intermediate unsafe samples. Then, if the time limit is reached before the algorithm has completed,
the unsafe sample that is estimated to be the least unsafe can be returned as the algorithm output. This
is the scheme we employ in the experiments in Section |4} with a per-action limit of 200 milliseconds.

4 Experiments

For the sake of comparison to previous work, we restrict our experiments to Safety Gym environments
with only the Point robot. Point is a simple robot constrained to the 2D plane, with one actuator
for turning and another for moving forward or backward [[10], and resembles the spaceship robot
in experiments by Dalal et al. [5]. In the Goal environments a robot must navigate to a goal while
avoiding hazard zones using a lidar-like sensor, in the Button environments a robot must navigate
both still and moving hazards to reach touch a series of buttons [[L0]. The number appended to the
environment indicates the relative challenge of navigating the hazards present. We use an efficient
minimax tilting method to compute the CDF of and sample from truncated Gaussian distributions [[16]
and proximal policy optimization (PPO) as our underlying training algorithm [17].

Our first experiments are designed to assess the modelling gap between the linear model introduced in
the safety layer of Dalal et al. [S] and the nonlinear model of our safety layer. In this implementation,
the only required modification to the linear safety layer is to make its cost prediction absolute rather
than an additive update to a base value because the Safety Gym environments cost values per time
step are binary rather than real valued. The nonlinear safety layer uses a neural network with identical
architecture to the linear version, except that it outputs the predicted cost value directly. The true
positive and true negative rates of each approach are recorded in Table|l} Generally, false negatives
have a much higher risk than false positives, and so we emphasize the increase in the true positive
rate, though an increase in the true negative rate implies that the nonlinear model has the potential to
be less conservative.

Our second set of experiments directly tests the effect of censoring the policy with each of the
linear and nonlinear safety layers in an online setting with no pre-training. Results from the Goall,
Goal2, and Buttonl environments are presented in Figure[I. The episodic returns achieved by
the nonlinear method were very similar to the unconstrained agent in the Goall and Buttonl
environments. Although the episodic cost is difficult to interpret because large standard deviations
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Figure 1: Performance profiles comparing the effect of linear and nonlinear safety layers on training
to a baseline PPO model without a safety layer.

make the difference between the mean values seem small, the cost rate, is more interpretable.

Cumulatively, the nonlinear method improves the cost rate by about 10% or more over the baseline.

We find that the behavior of the linear safety layer is very different in that the learned policy tends to
collapse to be overly conservative part way through training, occasionally to the point of constraining
the policy from taking any useful actions. In the Goal2 environment the performance of the nonlinear
model began to collapse, though the agent recovered and finished training with significantly higher
returns than the linear method. We hypothesize that these collapses are due to the safety layer choosing
very low-likelihood actions in the course of training, leading to instability in the policy gradient
updates. For the linear agent, we believe selection of low likelihood actions resulted from difficulty
in linearizing the constraint function and, thus, overly conservative updates to the action. We have
also observed similar behavior in the nonlinear agent, in which it’s due to numerical instability in our
implementation, rather than any fundamental feature of the proposed method. Another consequence

of this collapse is that the linear method has much lower cost rate than the unconstrained baseline.

This may be more due to inaction, as episodic cost is correlated with episodic return. Performance in
these metrics have been found to trade off with one other meaningfully in previous work [[10].

5 Discussion

We’ve introduced a method for efficiently sampling from a DNN-parameterized safety layer. In

experiments, we find that it can learn a non-conservative policy where a linear safety layer fails.

More hyperparameter tuning or combination with another safety method will be required as part of
future work to more significantly reduce constraint violations. Further, experiments against other
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methods [6} 7], with varying degrees of pre-training, and in more environments will clarify the
trade-offs of the proposed technique.
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