
A Qualitative Analysis of Search Behavior:
A Visual Approach

Ian Howell,1,2 Robert Woodward,1 Berthe Y. Choueiry,1 Hongfeng Yu2

1Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
2Visualization Laboratory, University of Nebraska-Lincoln, USA

{ihowell|rwoodwar|choueiry|yu}@cse.unl.edu

Abstract
In this paper, we propose visualizations that track
the progress and behavior of backtrack search
when solving an instance of a Constraint Satis-
faction Problem. The goal of our visualizations
is to provide insight in the difficulty of the par-
ticular instance at hand as well as in the effec-
tiveness of various strategies for enforcing consis-
tency during search. To this end, our visualiza-
tions track the number of backtracks and the num-
ber of calls to a consistency algorithm per depth of
the search tree and superimpose the two measures
while distinguishing effective and wasteful consis-
tency calls. Using these numbers, we automatically
derive qualitative regimes summarizing the evolu-
tion of the search process over time. We show
that these instruments provide new insights into the
performance of search on a particular instance and
into the effectiveness of the various strategies for
enforcing consistency during search. We present
WORMHOLE, an extendable, solver-agnostic visu-
alization tool that we built as a platform to imple-
ment these mechanisms. Currently WORMHOLE
provides a ‘post-mortem’ analysis of search, but
our ultimate goal is to provide an ‘in-vivo’ analy-
sis and allow the user to intervene and guide the
search process.

1 Introduction
In this paper, we propose a new perspective and visualiza-
tion tools to understand and analyze the behavior of the
backtrack-search procedure for solving Constraint Satisfac-
tion Problems (CSPs). Backtrack search is currently the only
sound and complete algorithm for solving CSPs. However,
its performance is unpredictable and can differ widely on
similar instances. Further, maintaining a given consistency
property during search has become a common practice and
new strategies for dynamically switching between consis-
tency algorithms are being investigated [Borrett et al., 1996;
Freuder and Wallace, 1991; Epstein et al., 2005; Eén and
Biere, 2005; Stergiou, 2008; Lagerkvist and Schulte, 2009;
Paparrizou and Stergiou, 2012; Balafrej et al., 2013; Bal-
afrej et al., 2014; Woodward et al., 2014; Wallace, 2015;

Balafrej et al., 2015; Woodward et al., 2011; Paparrizou and
Stergiou, 2017]. While consistency algorithms can dramati-
cally reduce the size of the search space, their impact on the
CPU cost of search can vary widely. It is likely poorly under-
stood but certainly difficult to control.

In this paper, we propose three tools and their visualiza-
tions as a first step towards graphically summarizing and ex-
plaining the performance of search:

1. We track the number of backtracks per depth (BpD) at
each level of search to understand where and how search
struggles and where it smoothly proceeds.

2. To understand the impact of enforcing a given consis-
tency property, we track the number of calls to the con-
sistency algorithm per depth (CpD) in the search tree.
Further, we split these calls into three categories: those
that yield domain wipeout (i.e., detect inconsistency),
those that effectively filter domains without detecting a
dead-end, and those that yield no filtering (i.e., consti-
tute a wasted effort).

3. To summarize the behavior of search over time, we
structure the evolution of the above two measurements
into qualitatively equivalent regimes by using three cri-
teria that characterize growth rate and shape evolution.

We implement the above mechanisms in a visualization sys-
tem called WORMHOLE that allows users to interactively ex-
amine the performance of search and graphically compare
the performance of various algorithms on the same instance.
WORMHOLE is a first step towards building a library of visu-
alization tools aimed at providing an insight into the strengths
and weaknesses of current algorithms for solving CSPs.

While our system does not generate verbal explanations,
we claim that the graphical tools that it provides directly
‘speak’ to a user’s intuitions. Our long-term goal is to allow
users to actively intervene in the search process itself, try-
ing alternatives and mixing strategies while observing their
effects on the effectiveness of problem solving.

This paper is structured as follows. Section 2 recalls back-
ground information and reviews the relevant literature. Sec-
tion 3 describes the proposed visualizations. Section 4 dis-
cusses how search evolution is organized into regimes of
equivalent behaviors to facilitate user understanding. Sec-
tion 5 is a case study showing how our visualizations allow

us to compare and understand the performance of three strate-
gies for solving the same CSP instance. Section 6 briefly de-
scribes the architecture of WORMHOLE. Finally, Section 7
concludes the paper.

2 Background
A CSP is defined by a tuple (X,D,C), where X is a set of
variables, D is the set of the variables’ domains, and C a set
of constraints that restrict the combinations of values that the
variables can take at the same time. A solution to a CSP is an
assignment of values to variables such that all constraints are
simultaneously satisfied.

Backtrack (BT) search is currently the only sound and
complete algorithm for solving CSPs. In order to reduce
thrashing, which is the main malady of search, it is com-
mon practice to enforce a given consistency property after
every variable instantiation. This procedure reduces the size
of the search space by deleting, from the variables’ domains,
values that cannot appear in a consistent solution given the
current search path (i.e., conditioning). In recent years, the
research community has investigated higher-level consisten-
cies (HLC) as inference techniques to prune larger portions
of the search space at the cost of increased processing ef-
fort [Freuder and Elfe, 1996; Debruyne and Bessiere, 1997;
Samaras and Stergiou, 2005; Bessière et al., 2008], leading to
a tradeoff between the search effort and the time for enforcing
consistency. We claim that our visualizations are insightful
tools for understanding such a tradeoff.

Prior research on search visualization has appeared in
the Constraint Programming literature, which typically fo-
cuses on the 2-way branching search scheme in contrast to
the k-way branching scheme adopted by the CSP commu-
nity. The DiSCiPl project provides extensive visual func-
tionalities to develop, test, and debug constraint logic pro-
grams such as displaying variables’ states, effect of con-
straints and global constraints, and event propagation at
each node of the search tree [Simonis and Aggoun, 2000;
Carro and Hermenegildo, 2000]. Many useful methodologies
from the DiSCiPl project are implemented in CP-Viz [Simo-
nis et al., 2010] and other works [Shishmarev et al., 2016].
The OZ Explorer displays the search tree allowing the user to
access detailed information about the node at each tree node
and to collapse and expand failing trees for closer examina-
tion [Schulte, 1996]. This work is currently incorporated into
Gecode’s Gist [Schulte et al., 2015]. The above approaches
focus on exploring the search tree (as well as a problem’s
components) while our work proposes particular projections
(i.e., views, summaries) of the data reflecting (i.e., compiling)
the cost and the effectiveness of both search and enforcing
consistency. We believe that these visualizations are orthog-
onal and complementary.

Tracking search effort by depth was first proposed by Ep-
stein et al. [2005] for the number of constraint checks and
values removed per search and by Simonis et al. [2010] in
CP-Viz for the number of nodes visited (also used for solv-
ing a packing problem [Simonis and O’Sullivan, 2011]). We
claim that the number of constraint checks, values removed,
and nodes visited are not accurate measures of the thrashing

effort. Indeed, the number of constraint checks varies with
the degree of the variables. The number of values removed
and nodes visited vary with the size of the domain. In con-
trast, we claim that the number of backtracks per search depth
(BpD) provides a more faithful representation of the thrash-
ing effort, which is exactly the aspect of search that we aim
to characterize.

Recently, techniques have appeared in Constraint Process-
ing for dynamically choosing between a set of consistency
properties based on the CPU time spent on exploring a given
subtree [Balafrej et al., 2015]. We claim that we better track
the effectiveness of such decisions by following the number
of backtracks per depth (BpD) and the number of consistency
calls per depth (CpD) rather than the CPU time of searching
a given subtree.

In the SAT community, inprocessing (in the form of the
application of the resolution rule) interleaves search and in-
ference steps [Järvisalo et al., 2012; Wotzlaw et al., 2013].
Resolution is allocated a fixed percentage of the CPU time
(e.g., 10%) and sometimes its effectiveness is monitored for
early termination. We believe that inference should be tar-
geted at the ‘areas’ where search is struggling rather than fol-
lowing a predetermined and fixed effort allocation. We claim
that the visualization provided by WORMHOLE can be used
to identify where such an effort is best invested.

3 Analyzing Search Effectiveness
The BpD chart reflects various aspects of search effective-
ness as we illustrate with an example. We consider the in-
stance of a coloring problem called 4-insertions-3-3 of the
benchmark graphColoring-k-insertions.1 We find one solu-
tion of this instance using backtrack search while maintaining
one of two consistency properties, namely GAC [Mackworth,
1977] and POAC [Bennaceur and Affane, 2001], and using
the dom/wdeg ordering heuristic [Boussemart et al., 2004].
The definitions of GAC and POAC are beyond the scope of
this paper: it suffices to say that an algorithm that enforces
GAC is generally quick but does little filtering while a POAC
algorithm is typically (very) costly but can prune larger sub-
trees of the search space. In fact, enforcing POAC during
search is so costly that, in practice, we use an adaptive ver-
sion called APOAC [Balafrej et al., 2014].

Table 1 reports the cost of the two search algorithms in
terms of their CPU time, the number of nodes visited by
search, the number of backtracks, and the maximum value
reached by the respective BpD curves, which are shown in
Figure 1. As we can see from Table 1, it is clear that our ‘in-

Table 1: Cost of GAC and APOAC on 4-insertions-3-3. Note that
GAC times out. In WORMHOLE, this data is displayed in a panel.

Algorithm GAC APOAC
CPU Time (sec) >8,099.9 2,981.9
Nodes Visited 348,276,252 17,078,644
Backtracks 252,570,526 13,416,093
maxBpD 15,863,603 693,829

1Source: www.cril.univ-artois.fr/˜lecoutre/
benchmarks.html.

www.cril.univ-artois.fr/~lecoutre/benchmarks.html
www.cril.univ-artois.fr/~lecoutre/benchmarks.html

vestment’ in a stronger consistency algorithm is worthwhile
because APOAC solves the instance in about 50 minutes
while GAC does not terminate. Comparing the BpD charts of
GAC (left) and APOAC (right) in Figure 1, we see that GAC
thrashes around depth 50 with maxBpD = 15, 863, 603 back-
track at depth 53. APOAC, which enforces a strictly stronger
consistency throughout search, limits the severity of thrash-
ing to only maxBpD = 693, 829 backtracks at depth 40. By
detecting and pruning inconsistencies at the shallower search
levels, APOAC solves the problem while GAC fails.

Figure 1: BpD for GAC (left) and APOAC (right) on instance 4-
INSERTIONS-3-3.

Naturally, investing in a high-level consistency (HLC) is
not always worthwhile. On easy instances, the cost of
APOAC is can be an overkill. To examine the effective-
ness of enforcing an HLC, we propose another visualization,
which superimposes, to the BpD chart, the chart reporting the
number of calls to POAC per depth (CpD). Figure 2 (left)
unsurprisingly shows that the BpD and the CpD charts of
APOAC largely overlap in shape (modulo their respective
ranges shown on both sides of the chart), which is explained
by the fact that APOAC is called at every variable instantia-
tion during search. In other dynamic strategies where two or
more levels of consistency are enforced, the CpD would al-
low us to differentiate between the impact of each consistency
algorithm.

Figure 2: Superimposing CpD onto BpD for APOAC on 4-
INSERTIONS-3-3: Showing CpD total (left) and detailed as wipeout,
filtering, no filtering (right)

We propose a third visualization by splitting more finely
the CpD into three categories depending on whether calls to
POAC resulted in (1) in a domain wipeout, (2) filtering but
no wipe out, and (3) no filtering. In Figure 2 (right), these
three CpDs are shown in green (the most effective POAC
calls, which cause backtracking), blue (which prune incon-
sistent subtrees, reduce the search space, but cannot detect
inconsistencies), and red (which are wasteful calls to POAC
resulting in no filtering). In the case of our particular exam-
ple, we can see that the wasteful calls to POAC are fewer,
and not as much time is wasted at deeper levels. This real-
ization fully explains the ability of APOAC to prevent search

from thrashing at deeper search levels and its effectiveness in
solving this difficult instance.

4 Analyzing Search Evolution
The visualizations discussed in Section 3 provide interesting
information at particular snapshots in time and at the end of
search. However, in practice, search can last from a few mil-
liseconds in duration to hours (before timeout). Thus, it is
not practical, sometimes impossible, to examine the evolu-
tion of search from beginning to end. In order to help the user
build an understanding of the evolution of search over time,
gain insight in the difficulty of the problem at hand, perhaps
even detect critical transitions in search behavior, we propose
to automatically and dynamically organize the evolution of
search over time in terms of a history of successive episodes
that are qualitatively meaningful,2 where each episode is a
collection of equivalent behaviors.

We propose a two-step procedure to build such histories.
First, we partition the time duration of the entire search into
time intervals based on some criterion of equivalent behavior.
We call these time intervals regimes [Kuipers, 1994]. Next,
we provide a mechanism to dilate the time duration (i.e., by
compressing or stretching it) of each regime, then concatenate
them into a continuous animation of the history of the search.

Definition 1 (Regime, History) Given a search procedure
of total duration T , a given behavior function B and an
equivalence relation ∼, a regime Ri is a contiguous interval
of time [si, ei] ⊆ T during which the search features defining
the behavior are qualitatively equivalent by some metric. The
search history is a sequence of such regimes.

H =〈R1, . . . , Rn〉
Ri =〈Bi, [si, ei]〉 where [si, ee] ⊆ T,

∀ti, tj ∈ [si, ee]→ B(ti) ∼ B(tj)

T =

n⋃
i=1

[si, ei]

While the set of desirable and useful behaviors and search
features may be limitless, we integrate in WORMHOLE the
following ones:

1. BASIC: Using the maximum value of BpD, maxBpD,
we partition the duration of search into a number of k
regimes (k determined by the user), where the largest
BpD value exceeds another kth fraction of the value of
maxBpD.

2. GROWTH: From the beginning of search, we generate a
new regime each time the largest BpD value increases
by 10%.

3. SHAPE: From the start of search, we compute the Shan-
non Entropy of the derivatives over depth of the BpD to
represent the relative shape of BpD curve [Rényi, 1961].
We start a new regime when this value changes by 20%.

2Our use of the term ‘history’ is in compliance with its initial
meaning as proposed by Hayes [Hayes, 1990].

Figure 3: BASIC regimes of GAC on pseudo-aim-200-1-6-4
(cropped right-edges for space)

Figure 4: SHAPE regime of GAC on pseudo-aim-200-1-6-4
(cropped right-edges for space)

Of the above three regimes, SHAPE can recognize the most
interesting changes in the BpD because it recognizes the
change of the depth where thrashing occurs. Figures 3 and 4
show two regime progressions of GAC on the pseudo-aim-
200-1-6-4 instance.3 Figure 3 emphasizes the growth over
time, while Figure 4 highlights the change in shape of the
BpD.

We generate animations (of a user-specified duration) by
applying time dilation on the histories generated with any of
the three above behaviors. Currently, WORMHOLE imple-
ments two time-dilation methods, namely, EQUAL and PRO-
PORTIONAL. EQUAL assigns to each regime an equal amount
of time, while PROPORTIONAL assigns to each regime an an-
imation time that is proportional to the regime’s duration in
search. In addition, WORMHOLE allows the user to directly
modify the percentage of time that each regime takes inde-
pendently of the above two dilation methods.

5 Case Study: PREPEAK+

In this section, we use WORMHOLE to understand and com-
pare the behavior of PREPEAK+, a new reactive strategy for
enforcing high level consistency during search [Woodward et
al., 2018]. To this end, we solve the CSP instance pseudo-
aim-200-1-6-4 studied in Section 4 with backtrack search un-
der three settings: (1) maintaining GAC, (2) with APOAC,
and (3) PREPEAK+. PREPEAK+ is conservative in that it
primarily enforces GAC. However, it triggers an HLC, such
as POAC, when the number of backtracks per depth (BpD)
reaches a given threshold value θ but only when search back-
tracks to levels shallower than the depth where the threshold
is met. PREPEAK+ keeps firing the HLC as long as the BpD
at the considered depth is smaller than θ. Furthermore, ev-
ery time it backtracks, PREPEAK+ updates the values of θ
by reducing it or increasing it according to three geometric
laws depending on whether the HLC yields wipeout (i.e., it is
effective), filters the search space, or yields no filtering (i.e.,
the HLC calls are wasteful). WORMHOLE reports the costs of
three search algorithms as shown in Table 2.

Figure 5 shows the BpD for GAC at the end of search.

3Instance pseudo-aim-200-1-6-4 of the benchmark pseudo-
aim from www.cril.univ-artois.fr/˜lecoutre/
benchmarks.html.

Table 2: Solving instance pseudo-aim-200-1-6-4 with GAC,
APOAC, PREPEAK+

GAC APOAC PREPEAK+

CPU time (sec) 185,045 66,816 17,836
#NV 3,978,074 47,457 284,289
maxBpD 34,023 407 2,421
#HLC calls 7,739 228

This curve exhibits a peak around depth 100 with maxBpD =
34, 023 showing that GAC is too weak to filter out bad values:
it spends much of its time thrashing around this depth level.

Figure 5: BpD and CpD of GAC on pseudo-aim-200-1-6-4

Figure 6 shows the BpD (black) and CpD (colored) curves
for APOAC. Examining the BpD curve, we realize that

Figure 6: BpD (black) and CpD’s (colored) of APOAC on pseudo-
aim-200-1-6-4

APOAC so effectively prunes the ‘bad subtrees’ from the

www.cril.univ-artois.fr/~lecoutre/benchmarks.html
www.cril.univ-artois.fr/~lecoutre/benchmarks.html

search space that it dramatically reduces maxBpD down to
407 and the location of peak to around depth 75. We see that
this instance benefits from enforcing an HLC such as POAC
with a clear benefit on the CPU time (which is reduced by
one order of magnitude from GAC). However, by observing
the colored curves in Figure 6, we notice that the number of
calls to POAC that are ineffective (red curve) are of the same
order as those that yield wipeout (green curve). The detailed
CpD curves hint to some savings that could be further ob-
tained could one cancel the wasteful calls to POAC.

Figure 7 shows the BpD (black) and CpD (colored) curves
for PREPEAK+. PREPEAK+ is conservative in that it calls

Figure 7: BpD (black) and CpD’s (colored) of PREPEAK+ on
pseudo-aim-200-1-6-4

an HLC only when search thrashes, justifying the cost of a
stronger but more costly consistency algorithm. Indeed, we
observe that the peak value of BpD is smaller than for GAC
but greater than for APOAC (2, 421 versus 34, 023 and 407,
respectively). However, examining the detailed CpD curves
shows that advantage of PREPEAK+: Indeed, the wasteful
calls to POAC (red) are almost eliminated and the total calls
to POAC are reduced down to 228 for PREPEAK+ from
7, 739 for APOAC. This economy in the calls to POAC is im-
mediately translated by the reduction of the CPU time. Thus,
despite the fact that PREPEAK+ explores a larger search tree
than APOAC (see number of nodes visited) because it does
not call the HLC at each variable instantiation, it effectively
reacts to thrashing, calling the HLC only when it is needed,
but spontaneously reverting to GAC otherwise.

This example illustrates the pertinence of the tools pro-
vided by WORMHOLE in visually explaining the behavior of
search and the benefits of PREPEAK+.

6 Architecture
Figure 8 shows the architecture of WORMHOLE. A constraint
solver exports data to a generic, JSON-based log file that
records the differences in tracked values over time (States 1-
2). These logs are then loaded by the user into WORMHOLE,
through (State 3), and parsed (State 4), into various data struc-
tures. At this point, the timeline data is pregenerated for

WORMHOLE

Solver

Log Files

Fetching Data Parsing Data

1

2
3

4

5

6

7

Generate Animation Data
BpD CpD Timeline More Data

Interface & Controllers

Per-Depth Chart More VisualizationsTimeline Chart

8

Figure 8: Architecture of WORMHOLE

immediate use while the BpD and CpD data are cached for
further data generation (State 5). Timeline data is then sent
immediately to the timeline chart and displayed to the user
(State 6). Through the use of control panel interaction the
user may generate new animations, select specific time infor-
mation, or control their playback (State 7). The user input
controller then calls (State 8) for the re-generation of data
(State 5) which updates the animation data and sent to the
user’s view (State 6).

We designed WORMHOLE using web technologies of
HTML, JavaScript, and CSS, based on the React-Redux
model [Walke, ; Abramov and Clark,]. In this framework,
React manages view rendering and user interaction, while
Redux manages the application state. While standard web-
application systems work adequately for logs with limited
data (10’s of MB), much search data is too large (100’s of
MB) to be handled by such systems. For the sake of perfor-
mance, we enhance the system as follows.

JavaScript is a single-threaded language because it is based
on an event-loop paradigm, which prevents the user from in-
teracting with the application during periods of heavy compu-
tation. In WORMHOLE, we use Web Workers, a modern fea-
ture of the browser, to prevent blocking: it offloads most of
the processing to a separate process. In this separate process,
we perform initial data parsing, animation pre-fetching, and
time-specific frame loading, which all are processor-intensive
tasks.

To accelerate frame loading during animation, we pre-fetch
all animation data in the data process and transfer it using
JavaScript Transferables, which are data structures for rapidly
transferring large data sets between web workers and the main
thread [Mozilla and individual contributors,]. Further, when
parsing the log, we perform regular sampling on the BpD and
CpD data in order to reduce the work needed to calculate spe-
cific time frames because only data differences over time are
stored in memory. When users request BpD and CpD data for
a specific time, we perform nearest neighbor interpolation,
only accepting samples of time not greater than the request
before calculating with the rest of the difference data.

With the increasing size of the backtrack data, it is not vi-
able to interactively visualize the entire backtrack data with
limited memory size and rendering capacity. To address this
issue, we apply a simple multi-resolution modeling technique
that samples the backtrack data-set across multiple resolu-

tions and, for each resolution, partitions the data-set into
blocks, each containing 1024 data points [Wynn et al., 1997].
When users zoom on this chart to different resolutions, the
blocks that have a resolution at least as great as the user’s view
and include points visible to the user are displayed on the
chart. This optimization drastically increases performance on
large searches from 0.2 frames per second (fps) to 20 fps.

7 Conclusions
WORMHOLE offers a number of new visualization and ani-
mation techniques that allow the user to explore and under-
stand the behavior of backtrack search and compare the per-
formance of different algorithms. We are currently applying
our techniques to Choco, a popular constraint solver that uses
binary search (2-way branching) while exploring new func-
tionalities.

Acknowledgments
This research is supported by NSF Grant No. RI-1619344
and NSF CAREER Award No. III-1652846. Robert Wood-
ward was supported by an NSF GRF Grant No. 1041000
and a Chateaubriand Fellowship. The experiments were com-
pleted utilizing the Holland Computing Center of the Univer-
sity of Nebraska, which receives support from the Nebraska
Research Initiative.

References
[Abramov and Clark,] Dan Abramov and Andrew Clark.

Redux. https://redux.js.org/. Accessed: 2017-
04-21.

[Balafrej et al., 2013] Amine Balafrej, Christian Bessiere,
Remi Coletta, and El-Houssine Bouyakhf. Adaptive Pa-
rameterized Consistency. In Proc. of CP 2013, volume
8124 of LNCS, pages 143–158. Springer, 2013.

[Balafrej et al., 2014] Amine Balafrej, Christian Bessiere,
El-Houssine Bouyakhf, and Gilles Trombettoni. Adaptive
Singleton-Based Consistencies. In Proc. of AAAI 2014,
pages 2601–2607, 2014.

[Balafrej et al., 2015] Amine Balafrej, Christian Bessière,
and Anastasia Paparrizou. Multi-Armed Bandits for Adap-
tive Constraint Propagation. In Proc. of IJCAI 2015, pages
290–296, 2015.

[Bennaceur and Affane, 2001] Hachemi Bennaceur and
Mohamed-Salah Affane. Partition-k-AC: An Efficient
Filtering Technique Combining Domain Partition and
Arc Consistency. In Proceedings of 7 th International
Conference on Principle and Practice of Constraint
Programming (CP’01), volume 2239 of LNCS, pages
560–564. Springer, 2001.

[Bessière et al., 2008] Christian Bessière, Kostas Stergiou,
and Toby Walsh. Domain Filtering Consistencies for Non-
Binary Constraints. Artificial Intelligence, 172:800–822,
2008.

[Borrett et al., 1996] James E. Borrett, Edward P.K. Tsang,
and Natasha R. Walsh. Adaptive Constraint Satisfaction:

The Quickest First Principle. In Proc. of ECAI 1996, pages
160–164, 1996.

[Boussemart et al., 2004] Frédéric Boussemart, Fred
Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing Systematic Search by Weighting Constraints. In Proc.
of ECAI 2004, pages 146–150, 2004.

[Carro and Hermenegildo, 2000] Manuel Carro and Manuel
Hermenegildo. Tools for Constraint Visualisation: The VI-
FID/TRIFID Tool. In Analysis and Visualization Tools for
Constraint Programming: Constraint Debugging, volume
1870 of Lecture Notes in Computer Science, pages 253–
272. Springer, 2000.

[Debruyne and Bessiere, 1997] Romuald Debruyne and
Christian Bessiere. Some Practicable Filtering Techniques
for the Constraint Satisfaction Problem. In Proc. of
IJCAI 1997, pages 412–417, 1997.

[Eén and Biere, 2005] Niklas Eén and Armin Biere. Effec-
tive Preprocessing in SAT Through Variable and Clause
Elimination. In Proc. of SAT 2005, volume 3569 of LNCS,
pages 61–75. Springer, 2005.

[Epstein et al., 2005] Susan L. Epstein, Eugene C. Freuder,
Richard M. Wallace, and Xingjian Li. Learning Propa-
gation Policies. In International Workshop on Constraint
Propagation and Implementation, pages 1–15, 2005.

[Freuder and Elfe, 1996] Eugene C. Freuder and Charles D.
Elfe. Neighborhood Inverse Consistency Preprocessing.
In Proc. of AAAI 1996, pages 202–208, 1996.

[Freuder and Wallace, 1991] Eugene C. Freuder and
Richard J. Wallace. Selective Relaxation For Constraint
Satisfaction Problems. In Proc. of ICTAI 1991, pages
332–339, 1991.

[Hayes, 1990] Patrick J. Hayes. Readings in Qualitative
Reasoning About Physical Systems, chapter The Second
Naive Physics Manifesto, pages 46–63. Morgan Kauf-
mann, 1990.

[Järvisalo et al., 2012] Matti Järvisalo, Marijn J. H. Heule,
and Armin Biere. Inprocessing Rules. In Proc. of
IJCAR 2012, volume 7364 of LNCS, pages 355–370.
Springer, 2012.

[Kuipers, 1994] Benjamin Kuipers. Qualitative Reasoning
- Modeling and Simulation with Incomplete Knowledge.
MIT Press, 1994.

[Lagerkvist and Schulte, 2009] Mikael Z. Lagerkvist and
Christian Schulte. Propagator Groups. In Proceedings of
5 th International Conference on Principle and Practice of
Constraint Programming (CP’99), volume 5732 of LNCS,
pages 524–538. Springer, 2009.

[Mackworth, 1977] Alan K. Mackworth. Consistency in
Networks of Relations. Artificial Intelligence, 8:99–118,
1977.

[Mozilla and individual contributors,] Mozilla and indi-
vidual contributors. MDN Web Docs: Transferable.
https://developer.mozilla.org/en-US/
docs/Web/API/Transferable. Accessed: 2017-
04-21.

https://redux.js.org/
https://developer.mozilla.org/en-US/docs/Web/API/Transferable
https://developer.mozilla.org/en-US/docs/Web/API/Transferable

[Paparrizou and Stergiou, 2012] Anastasia Paparrizou and
Kostas Stergiou. Evaluating Simple Fully Automated
Heuristics for Adaptive Constraint Propagation. In Proc.
of ICTAI 2012, pages 880–885, 2012.

[Paparrizou and Stergiou, 2017] Anastasia Paparrizou and
Kostas Stergiou. On Neighborhood Singleton Consisten-
cies. In Proc. of IJCAI 2017, pages 736–742, 2017.

[Rényi, 1961] Alfréd Rényi. On Measures of Entropy and In-
formation. Technical report, Hungarian Academy of Sci-
ences, Budapest, Hungary, 1961.

[Samaras and Stergiou, 2005] Nikos Samaras and Kostas
Stergiou. Binary Encodings of Non-binary Constraint Sat-
isfaction Problems: Algorithms and Experimental Results.
JAIR, 24:641–684, 2005.

[Schulte et al., 2015] Christian Schulte, Guido Tack, and
Mikael Z. Lagerkvist. Modeling and programming with
Gecode, 2015.

[Schulte, 1996] Christian Schulte. Oz Explorer: A visual
constraint programming tool. In International Symposium
on Programming Language Implementation and Logic
Programming, pages 477–478. Springer, 1996.

[Shishmarev et al., 2016] Maxim Shishmarev, Christopher
Mears, Guido Tack, and Maria Garcia de la Banda. Visual
Search Tree Profiling. Constraints, 21(1):77–94, 2016.

[Simonis and Aggoun, 2000] Helmut Simonis and Abder
Aggoun. Search-Tree Visualisation. In Analysis and Visu-
alization Tools for Constraint Programming: Constraint
Debugging, volume 1870 of Lecture Notes in Computer
Science, pages 191–208. Springer, 2000.

[Simonis and O’Sullivan, 2011] Helmut Simonis and Barry
O’Sullivan. Almost Square Packing. In Proc. of
CPAIOR 2011, pages 196–209. Springer, 2011.

[Simonis et al., 2010] Helmut Simonis, Paul Davern, Jacob
Feldman, Deepak Mehta, Luis Quesada, and Mats Carls-
son. A Generic Visualization Platform for CP. In Proc. of
CP 2010, pages 460–474, 2010.

[Stergiou, 2008] Kostas Stergiou. Heuristics for Dynami-
cally Adapting Propagation. In Proc. of ECAI 2008, pages
485–489, 2008.

[Walke,] Jordan Walke. React. https://reactjs.
org/. Accessed: 2017-04-21.

[Wallace, 2015] Richard J. Wallace. SAC and Neighbour-
hood SAC. AI Communications, 28(2):345–364, 2015.

[Woodward et al., 2011] Robert Woodward, Shant
Karakashian, Berthe Y. Choueiry, and Christian Bessiere.
Solving Difficult CSPs with Relational Neighborhood
Inverse Consistency. In Proc. of AAAI 2011, pages
112–119, 2011.

[Woodward et al., 2014] Robert J. Woodward, Anthony
Schneider, Berthe Y. Choueiry, and Christian Bessiere.
Adaptive Parameterized Consistency for Non-Binary
CSPs by Counting Supports. In Proc. of CP 2014, volume
8656 of LNCS, pages 755–764. Springer, 2014.

[Woodward et al., 2018] Robert J. Woodward, Berthe Y.
Choueiry, and Christian Bessiere. A Reactive Strategy for
High-Level Consistency During Search. In Proc. of IJ-
CAI 2018, pages 1–8, 2018.

[Wotzlaw et al., 2013] Andreas Wotzlaw, Alexander van der
Grinten, and Ewald Speckenmeyer. Effectiveness of Pre-
and Inprocessing for CDCL-based SAT Solving. Tech-
nical report, Institut für Informatik, Universität zu Köln,
Germany, 2013.

[Wynn et al., 1997] William C. Wynn, J. Fritz Barnes, Bernd
Hamann, and Mark Miller. Multiresolution and Adaptive
Rendering Techniques for Structured, Curvilinear Data. In
Scientific Visualization Conference (dagstuhl ’97), pages
332–332, 1997.

https://reactjs.org/
https://reactjs.org/

	Introduction
	Background
	Analyzing Search Effectiveness
	Analyzing Search Evolution
	Case Study: PrePeak+
	Architecture
	Conclusions

